

Welcome to pynvm documentation!

This framework aims to bring newer NVM (non-volatile memory)/SCM (storage-class memory)
technology functionalty to Python ecosystem. This project contains mainly the Python bindings
for some of the libraries present in the the excellent NVM Library [https://github.com/pmem/nvml]
together with modifications to make it Pythonic and easy to use without modifying the Python
interpreter itself.

Contents:

	Introduction
	Overview and Rationale

	How it works

	Installation and Requirements

	Getting Started
	Using pmem (low level persistent memory)
	Opening files, writting and reading

	Context managers for flush and drain and numpy buffers

	Using pmemlog (pmem-resident log file)
	Creating log pool and appending into it

	Using pmemblk (arrays of pmem-resident blocks)
	Creating block pool and writing into the blocks

	Examples

	API Documentation
	pmem – low level persistent memory support

	pmemlog – pmem-resident log file

	pmemblk – arrays of pmem-resident blocks

	License

Note

This framework is in active development and it is still in beta release.

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This library provides the unofficial Python bindings for the
NVM Library [https://github.com/pmem/nvml]. The bindings were created
using the Python CFFI package (C Foreign Function Interface for Python).

Overview and Rationale

Currently, there are no Python packages supporting persistent memory, where
by persistent memory we mean memory that is accessed like volatile memory,
using processor load and store instructions but retaining its contents across
power loss just like traditional storages.

The goal of this project is to provide Python bindings for the libraries part
of the NVM Library [https://github.com/pmem/nvml]. The pynvml project
aims to create bindings for the NVM Library without modifying the Python
interpreter itself, thus making it compatible to a wide range of Python
interpreters (including PyPy).

These bindings were created using
the Python CFFI package (C Foreign Function Interface for Python).

Note

This is not an official port of the NVM Library.

How it works

[image: _images/swarch.jpg]
Image from: http://pmem.io

In the imabe above, we can see different types of access to a NVDIMM device.
There are the standard and well known types of access like the one using the
standard file API (fopen/open, etc.), and the type of access that we’re really
interested which is the one on the right using Load/Store and bypassing the
Kernel space code. This is the shortest kind of access an application can
do to access the memory, and in our case, this is not only a traditional kind
of volatile memory, it is a persistent memory, and this is why it is so important,
because you don’t need to serialize data to disk anymore, you just need to keep your
data structures in memory, and now this data is also persistent. However with great
powers comes great responsabilities, now it is duty of your application to
provide things such as flushes and hardware drains
(i.e. CLWB/PCOMMIT instructions [http://danluu.com/clwb-pcommit/]), that is
where this framework and Intel’s NVM Library [https://github.com/pmem/nvml]
comes in.

See also

Planning the Next Decade of NVM Programming [http://www.snia.org/sites/default/files/SDC15_presentations/gen_sessions/AndyRudoff_Planning_for_Next_Decade.pdf].

Programming Models for Emerging Non-Volatile Memory Technologies [https://www.usenix.org/system/files/login/articles/08_rudoff_040-045_final.pdf].

Persistent Memory Byte-Addressable Non-Volatile Memory [http://storageconference.us/2014/Presentations/Panel3.Rudoff.pdf].

Persistent Memory: What’s Done, Coming Soon, Expected Long-term [https://linuxplumbersconf.org/2015/ocw//system/presentations/3015/original/plumbers_2015.pdf].

Installation and Requirements

To install pynvm, you’ll need to meet some requirements:

	NVM Library [https://github.com/pmem/nvml] (install instructions at Github)

After installing the requirements, you’ll just need to install the pynvm from
the Python PyPI repositories using pip:

pip install pynvm

pip will automatically install all dependencies for the Python package and then
you should be able to use the package.

Getting Started

In this section you’ll find tutorials on how to use each library supported by
the pynvm framework.

Using pmem (low level persistent memory)

The pmem module exposes a “pythonic” interface to the nvm.pmem API, which
provides low level persistent memory support.

See also

For more information regarding the libpmem, please
refer to libpmem manual [http://pmem.io/nvml/libpmem/] or
to the documentation on the API itself at nvm.pmem.

Opening files, writting and reading

You can see an example below on how to use the pmem API:

import os
from nvm import pmem
from fallocate import posix_fallocate

(optional) check the pmem library version
pmem.check_version(1, 0)

Open file to write and fallocate space
fhandle = open("dst.dat", "w+")
posix_fallocate(fhandle, 0, 4096)

mmap it using pmem
reg = pmem.map(fhandle, 4096)

Write on it and seek to position zero
reg.write("lol" * 10)
reg.write("aaaa")
reg.seek(0)

Read what was written
print reg.read(10)
print reg.read(10)

Persist the data into the persistent memory
(flush and hardware drain)
pmem.persist(reg)

Context managers for flush and drain and numpy buffers

You can also use context managers present in the API like the FlushContext
or the DrainContext:

import os
import numpy as np
from nvm import pmem
from fallocate import posix_fallocate

fhandle = open("dst.dat", "w+")
posix_fallocate(fhandle, 0, 4096)

Will persist (pmem_persist) and unmap
automatically
with pmem.map(fhandle, 4096) as reg:
 reg.write("lol" * 10)
 reg.write("aaaa")

 # This will create a numpy array located at
 # persistent memory (very cool indeed) where you
 # can reshape as you like
 n = np.frombuffer(reg.buffer, dtype=np.int32)
 print n.shape

Flush context will only flush processor caches, useful
in cases where you want to flush several discontiguous ranges
and then run hardware drain only once
m = pmem.map(fhandle, 4096)
with pmem.FlushContext(m) as reg:
 reg.write("lol" * 10)
 reg.write("aaaa")

Will only execute the hardware drain (aka PCOMMIT)
m = pmem.map(fhandle, 4096)
with pmem.DrainContext(m) as reg:
 reg.write("lol" * 10)
 reg.write("aaaa")

fhandle.close()

Using pmemlog (pmem-resident log file)

The pmemlog module exposes a “pythonic” interface to the nvm.pmemlog API, which
provides pmem-resident log (append-only) file memory support.

See also

For more information regarding the libpmemlog, please
refer to libpmemlog manual [http://pmem.io/nvml/libpmemlog/] or
to the documentation on the API itself at nvm.pmemlog.

Creating log pool and appending into it

You can see an example below on how to use the nvm.pmemlog API:

from nvm import pmemlog

Create the logging and print the size (default is 2MB when not
specified)
log = pmemlog.create("mylogging.pmemlog")
print log.nbyte()

Append to the log
log.append("persistent logging!")

Walk over the log (you can also specify chunk sizes)
def take_walk(data):
 print "Data:", data
 return 1

log.walk(take_walk)
This will show: "Data: persistent logging!"

Close the log pool
log.close()

Using pmemblk (arrays of pmem-resident blocks)

The pmemblk module exposes a “pythonic” interface to the nvm.pmemblk API, which
provides arrays of pmem-resident blocks support.

See also

For more information regarding the libpmemblk, please
refer to libpmemblk manual [http://pmem.io/nvml/libpmemblk/] or
to the documentation on the API itself at nvm.pmemblk.

Creating block pool and writing into the blocks

You can see an example below on how to use the nvm.pmemblk API:

from nvm import pmemblk

This will create a block pool with block size of 256 and
1GB pool
blockpool = pmemblk.create("happy_blocks.pmemblk", 256, 1<<30)

Print the number of blocks available
print blockpool.nblock()

Write into the 20th block
blockpool.write("persistent block!", 20)

Read the block 20 back
data = blockpool.read(20)
blockpool.close()

Reopen the blockpool and print 20th block
blockpool = pmemblk.open("happy_blocks.pmemblk")
print blockpool.read(20)

blockpool.close()

Examples

Warning

Under Construction.

API Documentation

All modules listed below are under the “nvm” module.

pmem – low level persistent memory support

See also

NVML libpmem documentation [http://pmem.io/nvml/libpmem/libpmem.3.html].

	
class nvm.pmem.DrainContext(memory_buffer, unmap=True)

	A context manager that will automatically drain the
specified memory buffer.

	Parameters:	memory_buffer – the MemoryBuffer object.

	
class nvm.pmem.FlushContext(memory_buffer, unmap=True)

	A context manager that will automatically flush the
specified memory buffer.

	Parameters:	memory_buffer – the MemoryBuffer object.

	
class nvm.pmem.MemoryBuffer(buffer_)

	A file-like I/O (similar to cStringIO) for persistent mmap’d regions.

	
read(size=0)

	Read data from the buffer.

	Parameters:	size – size to read, zero equals to entire buffer size.

	Returns:	data read.

	
seek(pos)

	Moves the cursor position in the buffer.

	Parameters:	pos – the new cursor position

	
write(data)

	Write data into the buffer.

	Parameters:	data – data to write into the buffer.

	
nvm.pmem.check_version(major_required, minor_required)

	Checks the libpmem version according to the specified major
and minor versions required.

	Parameters:	
	major_required – Major version required.

	minor_required – Minor version required.

	Returns:	returns True if the nvm has the required version,
or raises a RuntimeError exception in case of failure.

	
nvm.pmem.drain(memory_buffer)

	Wait for any PM stores to drain from HW buffers.

	Parameters:	memory_buffer – the MemoryBuffer object.

	
nvm.pmem.flush(memory_buffer)

	Flush processor cache for the given memory region.

	Parameters:	memory_buffer – the MemoryBuffer object.

	
nvm.pmem.has_hw_drain()

	This function returns true if the machine supports the
hardware drain function for persistent memory, such as that provided by the
PCOMMIT instruction on Intel processors.

	Returns:	return True if it has hardware drain, False otherwise.

	
nvm.pmem.is_pmem(memory_buffer)

	Return true if entire range is persistent memory.

	Returns:	True if the entire range is persistent memory, False otherwise.

	
nvm.pmem.map(file_, size)

	Map the entire file for read/write access

	Parameters:	file – The file descriptor of a file object.

	Returns:	The mapping, an exception will rise in case
of error.

	
nvm.pmem.msync(memory_buffer)

	Flush to persistence via msync().

	Parameters:	memory_buffer – the MemoryBuffer object.

	Returns:	the msync() return result, in case of msync() error,
an exception will rise.

	
nvm.pmem.persist(memory_buffer)

	Make any cached changes to a range of pmem persistent.

	Parameters:	memory_buffer – the MemoryBuffer object.

	
nvm.pmem.unmap(memory_buffer)

	Unmap the specified region.

	Parameters:	memory_buffer – the MemoryBuffer object.

pmemlog – pmem-resident log file

See also

NVML libpmemlog documentation [http://pmem.io/nvml/libpmemlog/libpmemlog.3.html].

	
class nvm.pmemlog.LogPool(log_pool)

	This class represents the Log Pool opened or created using
create() or open().

	
append(buf)

	This method appends from buffer to the current write offset in
the log memory pool plp. Calling this function is analogous to
appending to a file. The append is atomic and cannot be torn
by a program failure or system crash.

On success, zero is returned. On error, -1 is returned and errno
is set.

	
close()

	This method closes the memory pool. The log memory pool itself
lives on in the file that contains it and may be re-opened at a
later time using open().

	
nbyte()

	This method returns the amount of usable space in the log pool.
This method may be used to determine how much usable space is
available after libpmemlog has added its metadata to the memory pool.

Note

You can also use len() to get the usable space.

	Returns:	amount of usable space in the log pool.

	
rewind()

	This method resets the current write point for the log to zero.
After this call, the next append adds to the beginning of the log.

	
tell()

	This method returns the current write point for the log, expressed
as a byte offset into the usable log space in the memory pool. This
offset starts off as zero on a newly-created log, and is incremented
by each successful append operation. This function can be used to
determine how much data is currently in the log.

	Returns:	the current write point for the log, expressed as
a byte offset.

	
walk(func, chunk_size=0)

	This function walks through the log pool, from beginning to end,
calling the callback function for each chunksize block of data found.
The chunksize argument is useful for logs with fixed-length records
and may be specified as 0 to cause a single call to the callback
with the entire log contents.

	Parameters:	
	chunk_size – chunk size or 0 for total length (default to 0).

	func – the callback function, should return 1 if it should
continue walking through the log, or 0 to terminate
the walk.

	
nvm.pmemlog.check(filename)

	This method performs a consistency check of the file indicated
and returns True if the memory pool is found to be consistent.
Any inconsistencies found will cause this function to return False,
in which case the use of the file with libpmemlog will result
in undefined behavior.

	Returns:	True if memory pool is consistent, False otherwise.

	
nvm.pmemlog.check_version(major_required, minor_required)

	Checks the libpmemlog version according to the specified major
and minor versions required.

	Parameters:	
	major_required – Major version required.

	minor_required – Minor version required.

	Returns:	returns True if the nvm has the required version,
or raises a RuntimeError exception in case of failure.

	
nvm.pmemlog.create(filename, pool_size=2097152, mode=438)

	The create() function creates a log memory pool with the given total
pool_size. Since the transactional nature of a log memory pool
requires some space overhead in the memory pool, the resulting available
log size is less than poolsize, and is made available to the caller via
the nbyte() function.

Note

If the error prevents any of the pool set files from being
created, this function will raise an exception.

	Parameters:	
	filename – specifies the name of the memory pool file to be created.

	pool_size – the size of the pool (default to 2MB).

	mode – specifies the permissions to use when creating the file.

	Returns:	the new log memory pool created.

	Return type:	LogPool

	
nvm.pmemlog.open(filename)

	This function opens an existing log memory pool, returning a memory pool.

Note

If an error prevents the pool from being opened, this function
will rise an exception.

	Parameters:	filename – Filename must be an existing file containing a log memory
pool as created by the create()
method.
The application must have permission to open the file and
memory map it with read/write permissions.

	Returns:	the log memory pool.

	Return type:	LogPool

pmemblk – arrays of pmem-resident blocks

See also

NVML libpmemblk documentation [http://pmem.io/nvml/libpmemblk/libpmemblk.3.html].

	
class nvm.pmemblk.BlockPool(block_pool)

	This class represents the Block Pool opened or created using
create() or open().

	
bsize()

	This method returns the block size of the specified block memory
pool. It’s the value which was passed as block size
to create().

	Returns:	the block size.

	
close()

	This method closes the memory pool. The block memory pool itself
lives on in the file that contains it and may be re-opened at a
later time using open().

	
nblock()

	This method returns the usable space in the block memory pool,
expressed as the number of blocks available.

	Returns:	usable space in block memory pool in number of blocks.

	
read(block_num)

	This method reads a block from memory pool at specified block number.

Note

Reading a block that has never been written will return an
empty buffer.

	Returns:	data at block.

	
set_error(block_num)

	This method sets the error state for block number blockno in memory
pool. A block in the error state returns errno EIO when read. Writing
the block clears the error state and returns the block to normal use.

	Returns:	On success, zero is returned. On error, an exception will
be raised.

	
set_zero(block_num)

	This method writes zeros to block number blockno in memory pool.
Using this function is faster than actually writing a block of zeros
since libpmemblk uses metadata to indicate the block should read
back as zero.

	Returns:	On success, zero is returned. On error, an exception will
be raised.

	
write(data, block_num)

	This method writes a block from data to block number blockno in the
memory pool. The write is atomic with respect to other reads and
writes. In addition, the write cannot be torn by program failure
or system crash; on recovery the block is guaranteed to
contain either the old data or the new data, never a mixture of both.

	Returns:	On success, zero is returned. On error, an exception
will be raised.

	
nvm.pmemblk.check(filename, block_size=0)

	This function performs a consistency check of the file indicated
by path and returns True if the memory pool is found to be consistent.
Any inconsistencies found will cause it to return False, in which case
the use of the file with libpmemblk will result in undefined behavior.

Note

When block size is non-zero, it will compare it to the
block size of the pool and return False when they don’t match.

	Returns:	True if memory pool is consistent, False otherwise.

	
nvm.pmemblk.check_version(major_required, minor_required)

	Checks the libpmemblk version according to the specified major
and minor versions required.

	Parameters:	
	major_required – Major version required.

	minor_required – Minor version required.

	Returns:	returns True if the nvm has the required version,
or raises a RuntimeError exception in case of failure.

	
nvm.pmemblk.create(filename, block_size, pool_size=2097152, mode=438)

	This function function creates a block memory pool with the given
total pool size divided up into as many elements of block size as will
fit in the pool.

Note

Since the transactional nature of a block memory pool requires
some space overhead in the memory pool, the resulting number
of available blocks is less than poolsize / block size, and is
made available to the caller via the nblock().

If the error prevents any of the pool set files from being
created, this function will raise an exception.

	Parameters:	
	filename – specifies the name of the memory pool file to be created.

	block_size – the size of the blocks.

	pool_size – the size of the pool (default to 2MB).

	mode – specifies the permissions to use when creating the file.

	Returns:	the new block memory pool created.

	Return type:	BlockPool

	
nvm.pmemblk.open(filename, block_size=0)

	This function opens an existing block memory pool, returning a memory pool.

Note

If an error prevents the pool from being opened, this function
will rise an exception. If the block size provided is non-zero,
it will verify the given block size matches the block size used
when the pool was created. Otherwise, it will open the pool
without verification of the block size.

	Parameters:	filename – Filename must be an existing file containing a block
memory pool as created by the
create() method.
The application must have permission to open the file and
memory map it with read/write permissions.

	Returns:	the block memory pool.

	Return type:	BlockPool

License

Copyright 2016 HP Development Company, L.P.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of the <organization> nor the
 names of its contributors may be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Note

This library links with the NVML, you can see the
NVML license [https://github.com/pmem/nvml/blob/master/LICENSE] here.

 Python Module Index

 n |
 p

 		 	

 		
 n	

 	[image: -]
 	
 nvm	

 	
 	
 nvm.pmem	

 	
 	
 nvm.pmemblk	

 	
 	
 nvm.pmemlog	

 		 	

 		
 p	

 	
 	
 pmem	

 	
 	
 pmemblk	

 	
 	
 pmemlog	

Index

 A
 | B
 | C
 | D
 | F
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	append() (nvm.pmemlog.LogPool method)

B

 	
 	BlockPool (class in nvm.pmemblk)

 	
 	bsize() (nvm.pmemblk.BlockPool method)

C

 	
 	check() (in module nvm.pmemblk)

 	(in module nvm.pmemlog)

 	check_version() (in module nvm.pmem)

 	(in module nvm.pmemblk)

 	(in module nvm.pmemlog)

 	
 	close() (nvm.pmemblk.BlockPool method)

 	(nvm.pmemlog.LogPool method)

 	create() (in module nvm.pmemblk)

 	(in module nvm.pmemlog)

D

 	
 	drain() (in module nvm.pmem)

 	
 	DrainContext (class in nvm.pmem)

F

 	
 	flush() (in module nvm.pmem)

 	
 	FlushContext (class in nvm.pmem)

H

 	
 	has_hw_drain() (in module nvm.pmem)

I

 	
 	is_pmem() (in module nvm.pmem)

L

 	
 	LogPool (class in nvm.pmemlog)

M

 	
 	map() (in module nvm.pmem)

 	
 	MemoryBuffer (class in nvm.pmem)

 	msync() (in module nvm.pmem)

N

 	
 	nblock() (nvm.pmemblk.BlockPool method)

 	nbyte() (nvm.pmemlog.LogPool method)

 	
 	nvm.pmem (module)

 	nvm.pmemblk (module)

 	nvm.pmemlog (module)

O

 	
 	open() (in module nvm.pmemblk)

 	(in module nvm.pmemlog)

P

 	
 	persist() (in module nvm.pmem)

 	pmem (module)

 	
 	pmemblk (module)

 	pmemlog (module)

R

 	
 	read() (nvm.pmem.MemoryBuffer method)

 	(nvm.pmemblk.BlockPool method)

 	
 	rewind() (nvm.pmemlog.LogPool method)

S

 	
 	seek() (nvm.pmem.MemoryBuffer method)

 	
 	set_error() (nvm.pmemblk.BlockPool method)

 	set_zero() (nvm.pmemblk.BlockPool method)

T

 	
 	tell() (nvm.pmemlog.LogPool method)

U

 	
 	unmap() (in module nvm.pmem)

W

 	
 	walk() (nvm.pmemlog.LogPool method)

 	
 	write() (nvm.pmem.MemoryBuffer method)

 	(nvm.pmemblk.BlockPool method)

 _static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_images/swarch.jpg

_static/up.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to pynvm documentation!

 		Introduction

 		Overview and Rationale

 		How it works

 		Installation and Requirements

 		Getting Started

 		Using pmem (low level persistent memory)

 		Opening files, writting and reading

 		Context managers for flush and drain and numpy buffers

 		Using pmemlog (pmem-resident log file)

 		Creating log pool and appending into it

 		Using pmemblk (arrays of pmem-resident blocks)

 		Creating block pool and writing into the blocks

 		Examples

 		API Documentation

 		pmem – low level persistent memory support

 		pmemlog – pmem-resident log file

 		pmemblk – arrays of pmem-resident blocks

 		License

_static/imgs/logo.png
Next-generation non-volatile
memory for Python

_static/imgs/logo_red.png
& pynvm

_static/imgs/swarch.jpg

