
pynvm Documentation
Release 0.2

Christian S. Perone

Dec 29, 2017

Contents

1 What’s new ? 3
1.1 Version v.0.2 . 3

2 Introduction 5
2.1 Overview and Rationale . 5
2.2 How it works . 5
2.3 Installation and Requirements . 6

3 Getting Started 7
3.1 Using pmem (low level persistent memory) . 7

3.1.1 Opening files, writting and reading . 7
3.1.2 Context managers for flush and drain and numpy buffers 8

3.2 Using pmemlog (pmem-resident log file) . 9
3.2.1 Creating log pool and appending into it . 9

3.3 Using pmemblk (arrays of pmem-resident blocks) . 9
3.3.1 Creating block pool and writing into the blocks . 9

4 Examples 11

5 API Documentation 13
5.1 pmem – low level persistent memory support . 13
5.2 pmemlog – pmem-resident log file . 15
5.3 pmemblk – arrays of pmem-resident blocks . 17

6 License 21

7 Indices and tables 23

Python Module Index 25

i

ii

pynvm Documentation, Release 0.2

This framework aims to bring newer NVM (non-volatile memory)/SCM (storage-class memory) technology function-
alty to Python ecosystem. This project contains mainly the Python bindings for some of the libraries present in the the
excellent NVM Library together with modifications to make it Pythonic and easy to use without modifying the Python
interpreter itself.

Contents:

Contents 1

https://github.com/pmem/nvml

pynvm Documentation, Release 0.2

2 Contents

CHAPTER 1

What’s new ?

1.1 Version v.0.2

Changes in this version:

• Changes to mirror the nvml API changes regarding the pmem_map_file().

• Tests updates.

3

pynvm Documentation, Release 0.2

4 Chapter 1. What’s new ?

CHAPTER 2

Introduction

This library provides the unofficial Python bindings for the NVM Library. The bindings were created using the Python
CFFI package (C Foreign Function Interface for Python).

2.1 Overview and Rationale

Currently, there are no Python packages supporting persistent memory, where by persistent memory we mean memory
that is accessed like volatile memory, using processor load and store instructions but retaining its contents across
power loss just like traditional storages.

The goal of this project is to provide Python bindings for the libraries part of the NVM Library. The pynvml project
aims to create bindings for the NVM Library without modifying the Python interpreter itself, thus making it compatible
to a wide range of Python interpreters (including PyPy).

These bindings were created using the Python CFFI package (C Foreign Function Interface for Python).

Note: This is not an official port of the NVM Library.

2.2 How it works

In the image above, we can see different types of access to a NVDIMM device. There are the standard and well known
types of access like the one using the standard file API (fopen/open, etc.), and the type of access that we’re really
interested which is the one on the right using Load/Store and bypassing the Kernel space code. This is the shortest
kind of access an application can do to access the memory, and in our case, this is not only a traditional kind of volatile
memory, it is a persistent memory, and this is why it is so important, because you don’t need to serialize data to
disk anymore, you just need to keep your data structures in memory, and now this data is also persistent. However
with great powers comes great responsabilities, now it is duty of your application to provide things such as flushes and
hardware drains (i.e. CLWB/PCOMMIT instructions), that is where this framework and Intel’s NVM Library comes
in.

5

https://github.com/pmem/nvml
https://github.com/pmem/nvml
http://danluu.com/clwb-pcommit/
https://github.com/pmem/nvml

pynvm Documentation, Release 0.2

Fig. 2.1: Image from: http://pmem.io

See also:

Planning the Next Decade of NVM Programming.

Programming Models for Emerging Non-Volatile Memory Technologies.

Persistent Memory Byte-Addressable Non-Volatile Memory.

Persistent Memory: What’s Done, Coming Soon, Expected Long-term.

2.3 Installation and Requirements

To install pynvm, you’ll need to meet some requirements:

• NVM Library (install instructions at Github)

After installing the requirements, you’ll just need to install the pynvm from the Python PyPI repositories using pip:

pip install pynvm

pip will automatically install all dependencies for the Python package and then you should be able to use the package.

6 Chapter 2. Introduction

http://www.snia.org/sites/default/files/SDC15_presentations/gen_sessions/AndyRudoff_Planning_for_Next_Decade.pdf
https://www.usenix.org/system/files/login/articles/08_rudoff_040-045_final.pdf
http://storageconference.us/2014/Presentations/Panel3.Rudoff.pdf
https://linuxplumbersconf.org/2015/ocw//system/presentations/3015/original/plumbers_2015.pdf
https://github.com/pmem/nvml

CHAPTER 3

Getting Started

In this section you’ll find tutorials on how to use each library supported by the pynvm framework.

3.1 Using pmem (low level persistent memory)

The pmem module exposes a “pythonic” interface to the nvm.pmem API, which provides low level persistent memory
support.

See also:

For more information regarding the libpmem, please refer to libpmem manual or to the documentation on the API
itself at nvm.pmem.

3.1.1 Opening files, writting and reading

You can see an example below on how to use the pmem API:

import os
from nvm import pmem
from fallocate import posix_fallocate

(optional) check the pmem library version
pmem.check_version(1, 0)

Open file to write and fallocate space
fhandle = open("dst.dat", "w+")
posix_fallocate(fhandle, 0, 4096)

mmap it using pmem
reg = pmem.map(fhandle, 4096)

Write on it and seek to position zero
reg.write("lol" * 10)

7

http://pmem.io/nvml/libpmem/

pynvm Documentation, Release 0.2

reg.write("aaaa")
reg.seek(0)

Read what was written
print reg.read(10)
print reg.read(10)

Persist the data into the persistent memory
(flush and hardware drain)
pmem.persist(reg)

3.1.2 Context managers for flush and drain and numpy buffers

You can also use context managers present in the API like the FlushContext or the DrainContext:

import os
import numpy as np
from nvm import pmem
from fallocate import posix_fallocate

fhandle = open("dst.dat", "w+")
posix_fallocate(fhandle, 0, 4096)

Will persist (pmem_persist) and unmap
automatically
with pmem.map(fhandle, 4096) as reg:

reg.write("lol" * 10)
reg.write("aaaa")

This will create a numpy array located at
persistent memory (very cool indeed) where you
can reshape as you like
n = np.frombuffer(reg.buffer, dtype=np.int32)
print n.shape

Flush context will only flush processor caches, useful
in cases where you want to flush several discontiguous ranges
and then run hardware drain only once
m = pmem.map(fhandle, 4096)
with pmem.FlushContext(m) as reg:

reg.write("lol" * 10)
reg.write("aaaa")

Will only execute the hardware drain (aka PCOMMIT)
m = pmem.map(fhandle, 4096)
with pmem.DrainContext(m) as reg:

reg.write("lol" * 10)
reg.write("aaaa")

fhandle.close()

8 Chapter 3. Getting Started

pynvm Documentation, Release 0.2

3.2 Using pmemlog (pmem-resident log file)

The pmemlog module exposes a “pythonic” interface to the nvm.pmemlog API, which provides pmem-resident log
(append-only) file memory support.

See also:

For more information regarding the libpmemlog, please refer to libpmemlog manual or to the documentation on the
API itself at nvm.pmemlog.

3.2.1 Creating log pool and appending into it

You can see an example below on how to use the nvm.pmemlog API:

from nvm import pmemlog

Create the logging and print the size (default is 2MB when not
specified)
log = pmemlog.create("mylogging.pmemlog")
print log.nbyte()

Append to the log
log.append("persistent logging!")

Walk over the log (you can also specify chunk sizes)
def take_walk(data):

print "Data:", data
return 1

log.walk(take_walk)
This will show: "Data: persistent logging!"

Close the log pool
log.close()

3.3 Using pmemblk (arrays of pmem-resident blocks)

The pmemblk module exposes a “pythonic” interface to the nvm.pmemblk API, which provides arrays of pmem-
resident blocks support.

See also:

For more information regarding the libpmemblk, please refer to libpmemblk manual or to the documentation on the
API itself at nvm.pmemblk.

3.3.1 Creating block pool and writing into the blocks

You can see an example below on how to use the nvm.pmemblk API:

from nvm import pmemblk

This will create a block pool with block size of 256 and
1GB pool
blockpool = pmemblk.create("happy_blocks.pmemblk", 256, 1<<30)

3.2. Using pmemlog (pmem-resident log file) 9

http://pmem.io/nvml/libpmemlog/
http://pmem.io/nvml/libpmemblk/

pynvm Documentation, Release 0.2

Print the number of blocks available
print blockpool.nblock()

Write into the 20th block
blockpool.write("persistent block!", 20)

Read the block 20 back
data = blockpool.read(20)
blockpool.close()

Reopen the blockpool and print 20th block
blockpool = pmemblk.open("happy_blocks.pmemblk")
print blockpool.read(20)

blockpool.close()

10 Chapter 3. Getting Started

CHAPTER 4

Examples

Warning: Under Construction.

11

pynvm Documentation, Release 0.2

12 Chapter 4. Examples

CHAPTER 5

API Documentation

All modules listed below are under the “nvm” module.

5.1 pmem – low level persistent memory support

See also:

NVML libpmem documentation.

class nvm.pmem.DrainContext(memory_buffer, unmap=True)
A context manager that will automatically drain the specified memory buffer.

Parameters memory_buffer – the MemoryBuffer object.

nvm.pmem.FILE_CREATE = 1
Create the named file if it does not exist.

nvm.pmem.FILE_EXCL = 2
Ensure that this call creates the file.

nvm.pmem.FILE_SPARSE = 4
When creating a file, create a sparse (holey) file instead of calling posix_fallocate(2)

nvm.pmem.FILE_TMPFILE = 8
Create a mapping for an unnamed temporary file.

class nvm.pmem.FlushContext(memory_buffer, unmap=True)
A context manager that will automatically flush the specified memory buffer.

Parameters memory_buffer – the MemoryBuffer object.

class nvm.pmem.MemoryBuffer(buffer_, is_pmem, mapped_len)
A file-like I/O (similar to cStringIO) for persistent mmap’d regions.

read(size=0)
Read data from the buffer.

13

http://pmem.io/nvml/libpmem/libpmem.3.html

pynvm Documentation, Release 0.2

Parameters size – size to read, zero equals to entire buffer size.

Returns data read.

seek(pos)
Moves the cursor position in the buffer.

Parameters pos – the new cursor position

write(data)
Write data into the buffer.

Parameters data – data to write into the buffer.

nvm.pmem.check_version(major_required, minor_required)
Checks the libpmem version according to the specified major and minor versions required.

Parameters

• major_required – Major version required.

• minor_required – Minor version required.

Returns returns True if the nvm has the required version, or raises a RuntimeError exception in case
of failure.

nvm.pmem.drain(memory_buffer)
Wait for any PM stores to drain from HW buffers.

Parameters memory_buffer – the MemoryBuffer object.

nvm.pmem.flush(memory_buffer)
Flush processor cache for the given memory region.

Parameters memory_buffer – the MemoryBuffer object.

nvm.pmem.has_hw_drain()
This function returns true if the machine supports the hardware drain function for persistent memory, such as
that provided by the PCOMMIT instruction on Intel processors.

Returns return True if it has hardware drain, False otherwise.

nvm.pmem.is_pmem(memory_buffer)
Return true if entire range is persistent memory.

Returns True if the entire range is persistent memory, False otherwise.

nvm.pmem.map_file(file_name, file_size, flags, mode)
Given a path, this function creates a new read/write mapping for the named file. It will map the file using mmap,
but it also takes extra steps to make large page mappings more likely.

If creation flags are not supplied, then this function creates a mapping for an existing file. In such case, file_size
should be zero. The entire file is mapped to memory; its length is used as the length of the mapping.

See also:

NVML libpmem documentation.

Parameters

• file_name – The file name to use.

• file_size – the size to allocate

• flags – The flags argument can be 0 or bitwise OR of one or more of the following file
creation flags: FILE_CREATE, FILE_EXCL, FILE_TMPFILE, FILE_SPARSE.

14 Chapter 5. API Documentation

http://pmem.io/nvml/libpmem/libpmem.3.html

pynvm Documentation, Release 0.2

Returns The mapping, an exception will rise in case of error.

nvm.pmem.msync(memory_buffer)
Flush to persistence via msync().

Parameters memory_buffer – the MemoryBuffer object.

Returns the msync() return result, in case of msync() error, an exception will rise.

nvm.pmem.persist(memory_buffer)
Make any cached changes to a range of pmem persistent.

Parameters memory_buffer – the MemoryBuffer object.

nvm.pmem.unmap(memory_buffer)
Unmap the specified region.

Parameters memory_buffer – the MemoryBuffer object.

5.2 pmemlog – pmem-resident log file

See also:

NVML libpmemlog documentation.

class nvm.pmemlog.LogPool(log_pool)
This class represents the Log Pool opened or created using create() or open().

append(buf)
This method appends from buffer to the current write offset in the log memory pool plp. Calling this
function is analogous to appending to a file. The append is atomic and cannot be torn by a program failure
or system crash.

On success, zero is returned. On error, -1 is returned and errno is set.

close()
This method closes the memory pool. The log memory pool itself lives on in the file that contains it and
may be re-opened at a later time using open().

nbyte()
This method returns the amount of usable space in the log pool. This method may be used to determine
how much usable space is available after libpmemlog has added its metadata to the memory pool.

Note: You can also use len() to get the usable space.

Returns amount of usable space in the log pool.

rewind()
This method resets the current write point for the log to zero. After this call, the next append adds to the
beginning of the log.

tell()
This method returns the current write point for the log, expressed as a byte offset into the usable log space
in the memory pool. This offset starts off as zero on a newly-created log, and is incremented by each
successful append operation. This function can be used to determine how much data is currently in the
log.

Returns the current write point for the log, expressed as a byte offset.

5.2. pmemlog – pmem-resident log file 15

http://pmem.io/nvml/libpmemlog/libpmemlog.3.html

pynvm Documentation, Release 0.2

walk(func, chunk_size=0)
This function walks through the log pool, from beginning to end, calling the callback function for each
chunksize block of data found. The chunksize argument is useful for logs with fixed-length records and
may be specified as 0 to cause a single call to the callback with the entire log contents.

Parameters

• chunk_size – chunk size or 0 for total length (default to 0).

• func – the callback function, should return 1 if it should continue walking through the
log, or 0 to terminate the walk.

nvm.pmemlog.check(filename)
This method performs a consistency check of the file indicated and returns True if the memory pool is found to
be consistent. Any inconsistencies found will cause this function to return False, in which case the use of the
file with libpmemlog will result in undefined behavior.

Returns True if memory pool is consistent, False otherwise.

nvm.pmemlog.check_version(major_required, minor_required)
Checks the libpmemlog version according to the specified major and minor versions required.

Parameters

• major_required – Major version required.

• minor_required – Minor version required.

Returns returns True if the nvm has the required version, or raises a RuntimeError exception in case
of failure.

nvm.pmemlog.create(filename, pool_size=2097152, mode=438)
The create() function creates a log memory pool with the given total pool_size. Since the transactional nature
of a log memory pool requires some space overhead in the memory pool, the resulting available log size is less
than poolsize, and is made available to the caller via the nbyte() function.

Note: If the error prevents any of the pool set files from being created, this function will raise an exception.

Parameters

• filename – specifies the name of the memory pool file to be created.

• pool_size – the size of the pool (default to 2MB).

• mode – specifies the permissions to use when creating the file.

Returns the new log memory pool created.

Return type LogPool

nvm.pmemlog.open(filename)
This function opens an existing log memory pool, returning a memory pool.

Note: If an error prevents the pool from being opened, this function will rise an exception.

Parameters filename – Filename must be an existing file containing a log memory pool as cre-
ated by the create() method. The application must have permission to open the file and
memory map it with read/write permissions.

16 Chapter 5. API Documentation

pynvm Documentation, Release 0.2

Returns the log memory pool.

Return type LogPool

5.3 pmemblk – arrays of pmem-resident blocks

See also:

NVML libpmemblk documentation.

class nvm.pmemblk.BlockPool(block_pool)
This class represents the Block Pool opened or created using create() or open().

bsize()
This method returns the block size of the specified block memory pool. It’s the value which was passed as
block size to create().

Returns the block size.

close()
This method closes the memory pool. The block memory pool itself lives on in the file that contains it and
may be re-opened at a later time using open().

nblock()
This method returns the usable space in the block memory pool, expressed as the number of blocks avail-
able.

Returns usable space in block memory pool in number of blocks.

read(block_num)
This method reads a block from memory pool at specified block number.

Note: Reading a block that has never been written will return an empty buffer.

Returns data at block.

set_error(block_num)
This method sets the error state for block number blockno in memory pool. A block in the error state
returns errno EIO when read. Writing the block clears the error state and returns the block to normal use.

Returns On success, zero is returned. On error, an exception will be raised.

set_zero(block_num)
This method writes zeros to block number blockno in memory pool. Using this function is faster than
actually writing a block of zeros since libpmemblk uses metadata to indicate the block should read back
as zero.

Returns On success, zero is returned. On error, an exception will be raised.

write(data, block_num)
This method writes a block from data to block number blockno in the memory pool. The write is atomic
with respect to other reads and writes. In addition, the write cannot be torn by program failure or system
crash; on recovery the block is guaranteed to contain either the old data or the new data, never a mixture
of both.

Returns On success, zero is returned. On error, an exception will be raised.

5.3. pmemblk – arrays of pmem-resident blocks 17

http://pmem.io/nvml/libpmemblk/libpmemblk.3.html

pynvm Documentation, Release 0.2

nvm.pmemblk.check(filename, block_size=0)
This function performs a consistency check of the file indicated by path and returns True if the memory pool is
found to be consistent. Any inconsistencies found will cause it to return False, in which case the use of the file
with libpmemblk will result in undefined behavior.

Note: When block size is non-zero, it will compare it to the block size of the pool and return False when they
don’t match.

Returns True if memory pool is consistent, False otherwise.

nvm.pmemblk.check_version(major_required, minor_required)
Checks the libpmemblk version according to the specified major and minor versions required.

Parameters

• major_required – Major version required.

• minor_required – Minor version required.

Returns returns True if the nvm has the required version, or raises a RuntimeError exception in case
of failure.

nvm.pmemblk.create(filename, block_size, pool_size=2097152, mode=438)
This function function creates a block memory pool with the given total pool size divided up into as many
elements of block size as will fit in the pool.

Note: Since the transactional nature of a block memory pool requires some space overhead in the memory
pool, the resulting number of available blocks is less than poolsize / block size, and is made available to the
caller via the nblock().

If the error prevents any of the pool set files from being created, this function will raise an exception.

Parameters

• filename – specifies the name of the memory pool file to be created.

• block_size – the size of the blocks.

• pool_size – the size of the pool (default to 2MB).

• mode – specifies the permissions to use when creating the file.

Returns the new block memory pool created.

Return type BlockPool

nvm.pmemblk.open(filename, block_size=0)
This function opens an existing block memory pool, returning a memory pool.

Note: If an error prevents the pool from being opened, this function will rise an exception. If the block size
provided is non-zero, it will verify the given block size matches the block size used when the pool was created.
Otherwise, it will open the pool without verification of the block size.

18 Chapter 5. API Documentation

pynvm Documentation, Release 0.2

Parameters filename – Filename must be an existing file containing a block memory pool as
created by the create() method. The application must have permission to open the file and
memory map it with read/write permissions.

Returns the block memory pool.

Return type BlockPool

5.3. pmemblk – arrays of pmem-resident blocks 19

pynvm Documentation, Release 0.2

20 Chapter 5. API Documentation

CHAPTER 6

License

Copyright 2016 HP Development Company, L.P.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the <organization> nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Note: This library links with the NVML, you can see the NVML license here.

Note: This framework is in active development and it is still in beta release.

21

https://github.com/pmem/nvml/blob/master/LICENSE

pynvm Documentation, Release 0.2

22 Chapter 6. License

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

23

pynvm Documentation, Release 0.2

24 Chapter 7. Indices and tables

Python Module Index

n
nvm.pmem, 13
nvm.pmemblk, 17
nvm.pmemlog, 15

p
pmem, 13
pmemblk, 17
pmemlog, 15

25

pynvm Documentation, Release 0.2

26 Python Module Index

Index

A
append() (nvm.pmemlog.LogPool method), 15

B
BlockPool (class in nvm.pmemblk), 17
bsize() (nvm.pmemblk.BlockPool method), 17

C
check() (in module nvm.pmemblk), 17
check() (in module nvm.pmemlog), 16
check_version() (in module nvm.pmem), 14
check_version() (in module nvm.pmemblk), 18
check_version() (in module nvm.pmemlog), 16
close() (nvm.pmemblk.BlockPool method), 17
close() (nvm.pmemlog.LogPool method), 15
create() (in module nvm.pmemblk), 18
create() (in module nvm.pmemlog), 16

D
drain() (in module nvm.pmem), 14
DrainContext (class in nvm.pmem), 13

F
FILE_CREATE (in module nvm.pmem), 13
FILE_EXCL (in module nvm.pmem), 13
FILE_SPARSE (in module nvm.pmem), 13
FILE_TMPFILE (in module nvm.pmem), 13
flush() (in module nvm.pmem), 14
FlushContext (class in nvm.pmem), 13

H
has_hw_drain() (in module nvm.pmem), 14

I
is_pmem() (in module nvm.pmem), 14

L
LogPool (class in nvm.pmemlog), 15

M
map_file() (in module nvm.pmem), 14
MemoryBuffer (class in nvm.pmem), 13
msync() (in module nvm.pmem), 15

N
nblock() (nvm.pmemblk.BlockPool method), 17
nbyte() (nvm.pmemlog.LogPool method), 15
nvm.pmem (module), 13
nvm.pmemblk (module), 17
nvm.pmemlog (module), 15

O
open() (in module nvm.pmemblk), 18
open() (in module nvm.pmemlog), 16

P
persist() (in module nvm.pmem), 15
pmem (module), 13
pmemblk (module), 17
pmemlog (module), 15

R
read() (nvm.pmem.MemoryBuffer method), 13
read() (nvm.pmemblk.BlockPool method), 17
rewind() (nvm.pmemlog.LogPool method), 15

S
seek() (nvm.pmem.MemoryBuffer method), 14
set_error() (nvm.pmemblk.BlockPool method), 17
set_zero() (nvm.pmemblk.BlockPool method), 17

T
tell() (nvm.pmemlog.LogPool method), 15

U
unmap() (in module nvm.pmem), 15

27

pynvm Documentation, Release 0.2

W
walk() (nvm.pmemlog.LogPool method), 15
write() (nvm.pmem.MemoryBuffer method), 14
write() (nvm.pmemblk.BlockPool method), 17

28 Index

	What’s new ?
	Version v.0.2

	Introduction
	Overview and Rationale
	How it works
	Installation and Requirements

	Getting Started
	Using pmem (low level persistent memory)
	Opening files, writting and reading
	Context managers for flush and drain and numpy buffers

	Using pmemlog (pmem-resident log file)
	Creating log pool and appending into it

	Using pmemblk (arrays of pmem-resident blocks)
	Creating block pool and writing into the blocks

	Examples
	API Documentation
	pmem – low level persistent memory support
	pmemlog – pmem-resident log file
	pmemblk – arrays of pmem-resident blocks

	License
	Indices and tables
	Python Module Index

